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Abstract

The first objective of this paper is to present a series of accurate experimental measurements of the unsteady pressure

in the annulus between two concentric cylinders, the outer one of which executes a harmonic planar motion, either

transverse translational or rocking motion about a hinge, with and without annular flow. The second objective is the

solution of the unsteady Navier–Stokes and continuity equations for the same annular geometry under the same

boundary conditions for an incompressible fluid in the laminar regime. The solutions are obtained with a three-time-

level implicit integration method in a fixed computational domain by assuming small amplitudes of oscillation of the

outer cylinder. A pseudo-time integration method with artificial compressibility is used to advance the solution between

consecutive real time levels. The finite difference method is used for spatial discretization on a stretched staggered grid.

The problem is reduced to a scalar tridiagonal system, solved by a decoupling procedure which is based on a factored

Alternating Direction Implicit (ADI) scheme with lagged nonlinearities. The third objective is the comparison of the

experimental results with the theoretical ones. This comparison shows that the two are in good agreement in the case of

translational motion, and in excellent agreement in the case of rocking motion. The experimental and theoretical work

presented in this paper is useful for fluid–structure interaction and flow-induced vibration analyses in such geometries.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cylindrical structures subjected to either internal, external or annular flows are found in many engineering

constructions, particularly in the power-generating, chemical, and petrochemical industries, e.g., in the form of piping

of all kinds, marine risers, and chimneys; fuel pins, monitoring and control rods in nuclear reactors; heat exchanger tube

arrays and bundles of electrical conductors in transmission lines; and thin walled shrouds and flow-containment shells

in nuclear reactors, aircraft engines, and jet pumps; to name but a few of the most familiar such systems (Paı̈doussis,

1980, 1998, 2003).

The instabilities associated with internal and external axial flows are of limited practical concern for conventional

engineering systems. This is not the case with instabilities associated with annular flows. The analysis of unsteady
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confined flows with oscillating boundaries has recently elicited an increased research interest for its application to

numerous engineering problems, which explains the enhanced interest for the analysis of unsteady annular flows with

oscillating boundaries.

Unsteady annular flows between cylindrical structures executing transverse oscillation have been studied theoretically

(via simplified theoretical models) and experimentally by numerous researchers. The first attempt to explain the

mechanism underlying annular-flow-induced instabilities is due to Miller (1970), and the first analytical model for the

cylindrical geometry was developed by Hobson (1982). This problem has been seriously studied by, among others, Chen

et al. (1976), Mateescu and Paı̈doussis (1985), Mateescu et al. (1988) and Inada and Hayama (1990). These simplified

theoretical models were proven to give predictions in good agreement with experimental results, at least for simple

cylindrical structures (Mateescu et al., 1989).

For more realistic and complex geometries, insofar as the analysis of unsteady viscous flow in annuli with oscillating

boundaries is concerned, there was a need for more accurate experimental measurements of the unsteady forces and

accurate solutions based on the time-accurate integration of the full nonlinear Navier–Stokes equations. One such

attempt was made by Mateescu et al. (1994a, b), who used a computational method to integrate the linearized

Navier–Stokes (N–S) equations for small amplitude oscillation of the outer cylinder. Inherent in the computational

methods developed for this purpose was a high degree of accuracy and computational efficiency, necessary for the

simultaneous time-integration of the Navier–Stokes equations and the structural equations of motion, as required in the

study of the fluid–structure interaction (Mekanik et al., 1993; Mekanik, 1994; Mateescu et al., 1996).

Experimental measurements of the unsteady pressure on the annulus walls or the unsteady forces exerted on either

the inner or outer cylinder, Fig. 1, have been made in the past in turbulent flows, for the purposes of design or

validation of existing theoretical models [Spurr and Hobson (1984); Mateescu et al. (1988), 32 000pRep45 000;

Mekanik et al. (1994), 3000pRep20 000]. In contrast, no experiments were conducted for unsteady laminar flows,

which may be practically important, especially in very narrow annuli.

To study any fluid–structure interaction problem, one may use either an experimental or a theoretical (analytical or

numerical) approach, or a combination of the two. On the theoretical side, for an analytical solution, a number of

simplifying, often undesirable, assumptions need generally be made to render the problem tractable. Numerical

methods, on the other hand, have the advantage of flexibility. Furthermore, either type of theoretical analysis has the

following advantage vis-à-vis experiment: there are few inaccessible locations for computation, and no unwanted effects

due to disturbances caused by probes, bolts, support rods, etc. The main advantage of an experimental investigation is

that it studies reality itself. It has the disadvantage of being confined to measurement of a few variables, at judicious

locations. Therefore, if an experimental study is undertaken, it would generally benefit from a companion numerical

analysis which would supplement it. This, in fact, is the approach adopted in this paper.

There has been a great deal of work in the late 1990s on various aspects of vibrations and instabilities involving

annular flows that should be mentioned. On the experimental side, a large-scale programme utilizing the TAXI

apparatus (de Langre et al., 1994) was conducted on the stability of a cylindrical-conical centre-body and an oscillating

outer cylindrical pipe with annular flow upstream and diffuser-type flow in the downstream portion. Some combined

theoretical–experimental work, also involving the stability of a conical centre-body, was conducted by Arai and Tajima

(1998), the theoretical model being in the spirit of Inada and Hayama’s (1990). This type of work was taken further by

Arai and Tajima (1999) and Li et al. (2002). Also, a train of interconnected cylinders in a tunnel (hence involving an

equivalent annular flow) has been studied by Tanaka et al. (2001).
Fig. 1. Geometric representation of uniform annular passage with oscillating middle section of the outer cylinder.



ARTICLE IN PRESS
A. Mekanik, M.P. Paı̈doussis / Journal of Fluids and Structures 23 (2007) 1029–1046 1031
On the theoretical side, semi-empirical models were developed by Fujita et al. (1994), who reexamined essentially the

problem first studied by Hobson, and by Porcher and de Langre (1997), as well as the work just mentioned (Arai and

Tajima, 1999; Li et al., 2002). A very powerful numerical model involving linearized unsteady fluid dynamics for

fluid–structure interactions between annular flows and vibrating structures (the MOCCA code) was developed in

France; it involves little empirical input. It was utilized by Perotin and Granger (1997) to study the stability of systems

such as those in the aforementioned TAXI experiments, achieving remarkably accurate predictions.

The interested reader can find a review of all the pertinent work in Paı̈doussis (2003, Chapter 11), including work

involving annular flows and coaxial shells. Sample results from Mekanik’s (1994) work, reported in detail in the present

paper, are also presented therein.

The ultimate aim of this study is to validate the analytical model developed by Mekanik et al. (1993) and Mateescu

et al. (1994a) in laminar flow, if this proves possible. For this purpose, first the experimental programme for measuring

unsteady wall-pressures in cylindrical annuli will be presented. Then, the numerical model developed by Mekanik

(1994) for the analysis of unsteady confined flows with oscillating walls, based on the accurate time-integration of the

Navier–Stokes equations, is described. Finally, the experimental measurements are compared to the theoretical

predictions. Once the model is validated, it then becomes possible to couple the fluid-dynamics model with the equation

of motion of the rigid or flexible inner or outer cylinder (the motion of which is no longer prescribed), and a stability

analysis can then be conducted [see, e.g., Bélanger et al. (1994), Mekanik (1994)].

2. Experimental investigation

In the present study, a special apparatus was constructed, the general layout of which is shown in Fig. 2. With this

apparatus, rocking and lateral (translational) motions of part of the outer conduit are equally feasible, while the

cylindrical centre-body remains immobile.

To reduce such viscous-flow effects as flow separation and vortex shedding, neither of which is considered in the

numerical solution, a smooth transition between cylindrical and annular flow is desirable both upstream and

downstream. To this end, smooth ogives are mounted at the ends of the fixed centre-body, as shown in Fig. 2. The

constant cross-section segment, from the upstream ogive to the test-section, where the pressure was measured, is long

enough to obtain fully developed laminar flow. The tests have been conducted at low amplitudes of oscillation,

characterized by an amplitude/gap ratio smaller than 0.2. The tests were performed in air-flow.

2.1. Experimental apparatus

The test-section consists of a rigid cylindrical centre-body with ogival ends, concentrically located in a cylindrical

conduit; see Fig. 2. The ogives, together with an upstream meshed screen and a honeycomb help to make the

annular flow fully developed laminar and as uniform as possible. Since the central portion of the outer tubular

aluminium cylinder is forced to oscillate, there will always be discontinuities at the boundaries between the oscillating

portion of the outer cylinder and its immobile upstream and downstream extensions. A great deal of time was spent on

this effect. The ‘‘obvious’’ solution of using flexible thin rubber sleeves to connect the two was found unsatisfactory,

from the mechanical point of view: the sleeves had bias either in shape or in locked-in stresses which affected the

uniformity of motion in the case of transverse oscillation (by ‘‘pulling’’ at the extremities of the oscillating cylinder).

With zero-mean-flow experiments, any of the arrangements in Fig. 3(c) performed satisfactorily. With flow, however,
Fig. 2. Schematic representation of the experimental apparatus.
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especially at relatively high Reynolds number, arrangement (i) at the far left of Fig. 3(c) with sponge-felt gaskets was by

far the best.

The unsteady pressure was measured using eight PCB 103A11 and 103A12 pressure transducers (microphones)

situated at x/L ¼ 0.263, 0.342, 0.421, 0.500, 0.578, 0.657 and 0.763, in the vertical plane of oscillation, as shown in

Fig. 3(a). The arrangement for mounting the pressure transducers is shown in Fig. 3(b). At the mid-point, two

transducers were located diametrically opposite each other in order to compare the corresponding measured unsteady

pressures and the phase angle relative to the imposed oscillation.

In the case of translational motion, the oscillatory motion was transmitted to the cylinder by a yoke placed around

the midpoint X ¼ x/L ¼ 0.5 (Fig. 4(a)). For rocking motion, the oscillation about a ‘‘hinge’’ (X ¼ 0.237) was

transmitted via a flexible thin plate attached to the shaker at X ¼ 0.815 (Fig. 4(b)).

The outer conduit was oscillated by means of a Brüel & Kjaer electromagnetic shaker (exciter body B&K 4801, with

exciter head B&K 4812). The maximum peak-to-peak amplitude limit was 12.7mm and the maximum force rating was

445N; the possible frequency range was from 5Hz to 10 kHz. The shaker was controlled through a feedback loop by an

exciter control unit (B&K 1047) and power amplifier (B&K 2707), as shown in Fig. 5.

An accelerometer (B&K 4381) was mounted on the outer pipe for measuring the displacement of the oscillating

cylinder as well as the phase angle between the unsteady pressure signal and the acceleration signal, as shown in Fig. 5.

The signals from the pressure transducers (one at a time) and the accelerometer, after suitable conditioning (using

charge amplifier B&K 2624 and pressure signal amplifier PCB 483AO7), were fed into a dual channel FFT digital

spectrum analyzer (HP 3582A). These signals could be post-processed, as desired, by a PC computer incorporating an

HP–IB interface card, as shown in Fig. 5. The root-mean-square amplitude of the pressure and acceleration at the
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Fig. 3. (a) Dimensions of the apparatus and location of pressure transducers. (b) Mounting arrangement of the pressure transducers

inside the centre-body. (c) Sealing arrangements between the moving and stationary parts of the outer cylinder: (i) sponge rings

between flanges; (ii) close-fitting flanges; (iii) flange with rubbing contact (for zero axial flow only).
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Fig. 4. Schematic diagram of the centre-body, the outer cylinder, the shaker and the pressure transducers: (a) translational motion;

(b) rocking motion of the outer cylinder.
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Fig. 5. Schematic diagram of the experimental apparatus and measurement system.
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oscillation frequency were obtained from the corresponding spectra (typically with 16 averages). The phase difference of

the pressure relative to the acceleration was determined with the analyzer operating in transfer-function mode. It should

be mentioned that, in most cases, the signals contained superharmonics of the basic frequency; in what is presented in

this research a linear analysis is undertaken, and only the components at the principal frequency are considered.
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The air-flow was provided by a vacuum pump (used in suction mode), providing a laminar flow. The flow velocity

was measured by orifice plates.

Utilizing the present apparatus, the following parameters are varied in the experiments: (a) oscillation frequency;

(b) oscillation amplitude; (c) axial flow velocity.

2.2. Measured quantities

The flow rate was measured by means of several orifice plates (depending on the flow rate) of different size;

they were checked against one another using the appropriate equations, thus confirming that the orifice plates

could be used with confidence. The orifice plate was mounted near the downstream end of a straight pipe (3m long

and 40mm in diameter), as shown in Fig. 2. This length is required to obtain fully developed flow upstream of the

orifice plate.

The FFT spectrum analyzer is capable of providing the amplitude of either the accelerometer signal or the

pressure signal at the frequency of oscillation in the form of a power spectrum. The phase difference between the

pressure and acceleration could similarly be obtained from the cross-spectrum of these quantities as well as

the coherence which is obtained directly, as shown in Fig. 5. By measuring the coherence, one can make sure that the

pressure signals obtained are due to the oscillation of the outer cylinder and are not due to external sources

such as acoustic noise or vibration of the centre-body. The main advantage of using the FFT analyzer was that the

signal associated with secondary effects (e.g. the nonlinearity of the fluid motion, possible unexpected secondary

motions of the cylinders, flow disturbances, and acoustic wave pressure components) can adequately be separated from

the signal.

The pressure transducers were calibrated, one at a time, against a PCB 106B pressure transducer of known

sensitivity (43.51mV/kPa, with a resolution of 0.69 Pa) with the aid of a special device. Using the reference signal

from this transducer, the sensitivities of the actual pressure transducers were found to be in the range of

53.9–93.7mV/kPa. The accelerometer was calibrated with the aid of an accelerometer calibration exciter (B&K 4294),

the acceleration of which is fixed (10m/s2 at 159.2Hz). The sensitivity of the accelerometer (B&K 4381) was found

to be 1.02mV/m/s2.

2.3. Experimental procedure

The experiment was started by first setting the amplitude of oscillation, for example 1mm peak-to-peak, on the

exciter control. Then, the frequency, for instance 20Hz, was set. The shaker was turned on and the magnitude of the

r.m.s. value (with 16 averages) of the pressure on the FFT analyzer was read for two pressure transducers, since the

analyzer is dual-channel. Then, the next two transducers were selected by using a selector switch and the readings were

recorded by the computer.

To measure the phase angle, one of the channels of the analyzer was connected to the accelerometer, while the other

was connected to the selected pressure transducer via the selector switch. The mode of the analyzer was changed from

the one for amplitude reading to that for phase reading. The phase angles for all the transducers were recorded in the

same way as for pressure measurement. The corresponding coherence was then measured, following a similar

procedure.

For any individual experiment, if there was any doubt in the results or in the experimental environment, the

experiment was repeated several times to obtain through appropriate averaging the most accurate results possible.

Another important test to ensure more accurate results was to interchange the pressure transducers. This eliminated

doubts that the readings of some of the transducers were influenced by the local geometrical configuration, the

mounting, or set screws, support rods, pins, etc., which were used inside the annulus for rigidity.

3. Numerical method

3.1. Formulation of the method

The incompressible time-dependent Navier–Stokes and continuity equations in 3-D cylindrical coordinates can be

expressed in nondimensional conservation-law form as

qV
qt
þQðV; pÞ ¼ 0; = � V ¼

qu

qx
þ
qv

qr
þ
1

r

qw

qy
¼ 0, (1)
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where V ¼ ½u; v;w�T is the nondimensional velocity vector, and the vector QðV; pÞ ¼ ½Quðu; v;w; pÞ;Qvðu; v;w; pÞ;
Qwðu; v;w; pÞ�

T, which includes the convective derivative, pressure and viscous terms, has components

Quðu; v;w; pÞ ¼
qðuuÞ

qx
þ
1

r

qðrvuÞ

qr
þ
1

r

qðwuÞ

qy
þ

qp

qx
�

1

Re

q2u

qx2
þ

1

r

q
qr

r
qu

qr

� �
þ

1

r2
q2u

qy2

� �
, (2)

Qvðu; v;w; pÞ ¼
qðuvÞ

qx
þ

1

r

qðrvvÞ

qr
þ

1

r

qðwvÞ

qy
�

w2

r
þ
qp

qr
�

1

Re

q2v

qx2
þ
1

r

q
qr

r
qv

qr

� �
þ

1

r2
q2v

qy2
�

2

r2
qw

qy
�

v

r2

� �
, (3)

Qwðu; v;w; pÞ ¼
qðuwÞ

qx
þ
1

r

qðrvwÞ

qr
þ
1

r

qðwwÞ

qy
þ

vw

r
þ
1

r

qp

qy
�

1

Re

q2w

qx2
þ

1

r

q
qr

r
qw

qr

� �
þ

1

r2
q2w

qy2
þ

2

r2
qv

qy
�

w

r2

� �
. (4)

The above equations are written in dimensionless form, with Re denoting the Reynolds number in terms of a

characteristic length and velocity. Here u, v and w represent the nondimensional velocity components in the axial,

radial, and circumferential directions, respectively, while t, x and r are nondimensional time and space coordinates

(see Fig. 1), using the annular clearance h and the mean flow velocity Uo as appropriate length and velocity scales

(see Fig. 1); thus,

x ¼ x�=h; r ¼ r�=h; t ¼ t�Uo=h; o ¼ o�h=Uo;

u ¼ u�=Uo; v ¼ v�=Uo; w ¼ w�=Uo; V ¼ V�=Uo;

p ¼ ðp� � p�1Þ=ðr
�U2

oÞ; Re ¼ hUo=n ¼ 1
2
ReDh

; l ¼ l�=h;

(5)

where the asterisk denotes the dimensional quantities, and ReDh
is the Reynolds number based on the hydraulic

diameter of the annulus (Dh ¼ 2h). For the case of quiescent fluid, the pressure as well as the velocities, time and

frequency are nondimensionalized using Uo ¼ o�h as the flow velocity scale.

The numerical solution of Eq. (1) is obtained by using a three-point backward implicit scheme for the real time

discretization

3Vnþ1 � 4Vn þ Vn�1

2Dt
þQnþ1 ¼ 0, (6)

where Dt ¼ tnþ1 � tn ¼ tn � tn�1 is real time step and Qnþ1 ¼ QðVnþ1; pnþ1Þ.

The unsteady flow solution is known (assumed) at time levels tn�1 and tn, and the solution at time level tn+1 has to be

obtained from the equations

Vnþ1 þ aQnþ1 ¼ Fn; = � Vnþ1 ¼ 0, (7,8)

where a ¼ 2
3
Dt, Fn ¼ 1

3
ð4Vn � Vn�1Þ.

In the unsteady flow problem associated with forced vibration, the known velocity Vnþ1
B of the moving boundary is

imposed as a boundary condition, and the velocity at the fixed solid boundary is zero due to no-slip condition; thus

Eqs. (7) and (8) are subjected to the following boundary conditions (see Fig. 1):

u ¼ uB ¼ 0; v ¼ vB ¼ _e cos y; w ¼ wB ¼ �_e sin y, (9)

where he(t) ¼ �he cosot, _e ¼ de=dt, and the subscript B indicates ‘‘on the wall of the structure’’. If rocking motion of

the outer cylinder is considered, as shown in Fig. 4(b), then the following boundary condition is applied:

eðt; xÞ ¼ �
eðtÞ

l2
xþ

eðtÞðl1 þ l2Þ

l2
. (10)

At the inlet of the annular passage (x ¼ �l0), the in-flow boundary conditions are defined by the nondimensional

velocity components of fully developed laminar flow:

u ¼
UnðrnÞ

Uo

¼ 2
ðr20 � r2i Þ lnðr=riÞ � ðr

2 � r2i Þ lnðr0=riÞ

ðr20 þ r2i Þ lnðr0=riÞ � ðr
2
0 � r2i Þ

; v ¼ w ¼ 0. (11)

The spatial discretization uses central differencing based on a staggered (Harlow and Welch, 1965), stretched

(Vinokur, 1983) grid, see Fig. 6; hence, there is no need for the pressure to be defined at the fixed or moving boundaries,

and also more grid points are concentrated near these boundaries.
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Fig. 6. Schematic representation of the staggered grid used in the spatial discretization of the three-dimensional nonlinear equations.
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The solution of Eqs. (7) and (8) is obtained by using an iterative pseudo-time relaxation method with artificial

compressibility (Soh and Goodrich, 1988), by which the equations are replaced by

q �V
qt
þ �Vþ a �Q ¼ Fn; d

q �p
qt

� �
þ = � �V ¼ 0, (12,13)

where �VðtÞ and �pðtÞ are the intermediate values of the velocity and pressure between real-time levels tn and tn+1. Here, t
is the pseudo-time variable, and d represents an artificially added compressibility which can be based on a simplified

theory of characteristics (Chorin, 1967; Soh, 1987).

An implicit Euler scheme is used to semidiscretize in pseudo-time Eqs. (12) and (13) in the form

�V
nþ1
� �V

n

Dt
þ �V

nþ1
þ a �Q

nþ1
¼ Fn;

�pnþ1 � �pn

Dt
þ
1

d
= � �V

nþ1
¼ 0, (14,15)

with the initial values of �V
1
¼ Vn and �p1 ¼ pn. The resulting pseudo-time equations are recast in terms of pseudo-time

variations DV ¼ �V
nþ1
� �V

n
, DQ ¼ �Q

nþ1
� �Q

n
and Dp ¼ �pnþ1 � �pn. Thus, Eqs. (14) and (15) can be recast in delta

form as

ð1þ DtÞDVþ aDtDQ ¼ DtðFn � �V
n
� a �Q

n
Þ, (16)

Dpþ
Dt
d

= � ðDVÞ ¼ �
Dt
d

= � �V
n
, (17)

where DV ¼ ½Du;Dv;Dw�T and DQ ¼ ½DQu;DQv;DQw�
T in which DQu, DQv and DQw are expressed, using lagged

nonlinearities in which the values of �un, �vn and �wn are known at previous time levels and Du, Dv and Dw are unknown in

the DQ components; for example,

DQu ¼
qð �unDuÞ

qx
þ
1

r

qðr�vnDuÞ

qr
þ

1

r

qð �wnDuÞ

qy
þ

qðDpÞ

qx
�

1

Re

q2ðDuÞ

qx2
þ
1

r

q
qr

r
qðDuÞ

qr

� �
þ

1

r2
q2ðDuÞ

qy2

� �
. (18)

A factored ADI scheme (Soh, 1987) is used in this analysis to separate the numerical integration of Eqs. (16) and (17)

in x, r and y sweeps, which reads

ðIþ aDtDxÞðIþ aDtDrÞðIþ aDtDyÞDf ¼ DtR, (19)

where Df ¼ ½Du;Dv;Dw;Dp�T, and I represents the unit matrix.

Eq. (19) can be recast in delta form:

ðIþ aDtDxÞD~f ¼ DtR; ðIþ aDtDrÞDf̄ ¼ D~f; ððIþ aDtDyÞDf ¼ Df̄, (20)
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where the matrices Dx, Dr and Dy are given by

Dx ¼

Lþ 1=a 0 0 q=qx

0 L 0 0

0 0 L 0

1=ðadÞq=qx 0 0 0

2
66664

3
77775, (21)

Dr ¼

M 0 0 0

0 M þ 1=aþ 1=ðRe r2Þ � �wn=r q=qr

0 0 M þ �vn=rþ 1=ðRe r2Þ 0

0 ð1=adÞðq=qrÞðrÞ 0 0

2
66664

3
77775, (22)

Dy ¼

N 0 0 0

0 N ð2=Re r2Þq=qy 0

0 �ð2=Re r2Þq=qy N þ 1=a ð1=rÞq=qy

1=ðadÞq=qx 0 ð1=adrÞq=qy 0

2
66664

3
77775 (23)

in which

Lj ¼
qð �unjÞ
qx
�

1

Re

q2j
qx2

; Mj ¼
qðr�vnjÞ

rqr
�

1

Re

q
rqr

r
qj
qr

� �
; Nj ¼

qð �wnjÞ
rqy

�
1

Re

q2j

r2qy2
,

R ¼

Fn
u � �un � a �Q

n
u

Fn
v � �v

n � a �Q
n
v

Fn
w � �wn � a �Q

n
w

�ð1=dÞr � �V
n

2
6666664

3
7777775
,

where j is a dummy variable representing u, v or w.

Eqs. (20) is further spatially discretized by central differencing, as mentioned before, on a stretched staggered

grid based on hyperbolic stretching functions to concentrate more points near the oscillating and fixed boundaries

(Section 3.2). The final computational results at each real time step are Du, Dv, Dw and Dp from which the values of

unsteady u, v, w and p at time n+1 are obtained via

unþ1 ¼ un þ Du; vnþ1 ¼ vn þ Dv; wnþ1 ¼ wn þ Dw; pnþ1 ¼ pn þ Dp;

they are the output of the numerical computation. It should be mentioned that the values obtained for these quantities

are steady plus complex unsteady values. First, by using a sort of FFT programme (Cooley et al., 1969), the amplitude

and phase angle of each variable is determined and then the steady part is subtracted from the calculated value to obtain

the unsteady part.

The values of d and Dt are determined in the manner proposed by Soh and Goodrich (1988). The real time step is

chosen as Dt ¼ 2p/(19on), which is less than Dt ¼ 2p/(10on) recommended in the literature. For more details refer to

Mekanik (1994).

3.2. Implementation

A satisfactory grid generation and grid point distribution are major requirements for the numerical solution to be

accomplished successfully in terms of accuracy and stability. While the grids are staggered, the distribution functions

used for grid point location are a hyperbolic tangent stretching function for the radial direction r and a hyperbolic sine

stretching function in the axial direction x (Vinokur, 1983; Thompson et al., 1985), with coordinate y, 0pypp,
uniformly distributed along the circumferential direction. A typical staggered grid point distribution in 3-D is shown in

Fig. 6, and in general form in the physical domain and in stretched form in the computational domain in Fig. 7.

To solve the Navier–Stokes and continuity equations in the 3-D annular configuration, we need to generate a 3-D

mesh. This is done by choosing appropriate inner and outer radii, the stretching functions, and the number of grid
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Fig. 7. Physical and computational domains using the stretched grids.
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points in the r-, x- and y-directions; for this purpose, the numerical computations have been performed on a

nondimensional mesh with inner radius ri ¼ 4.785 and outer radius ro ¼ 5.785 with 89� 12� 15 grid points in those

directions.

The boundary conditions imposed on the equations to be solved are such that all perturbations in the flow quantities

be equal to zero at both inlet and outlet of the domain, including velocity components and pressure. The initial

conditions for the perturbations are set equal to zero before starting the vibration of the outer cylinder, and the

integration of the equations is implemented until a periodic solution is achieved, which takes at least three harmonic

cycles.

To get the 3-D solution we must first have a steady solution for the flow in the annular space before getting into

the solution procedure of the unsteady problem. Therefore, the problem is first solved for the steady case using the

velocity profile of Eq. (11). Then, using the steady results, the unsteady solution is started. As seen in the equations of

Section 3.1, a Reynolds number needs to be specified, even when the flow velocity is zero (quiescent fluid). In such cases,

we use the oscillatory Reynolds number, or Stokes number, S ¼ onh2=n, for oscillation at dimensional frequency on.

For U 6¼0, since o ¼ onh=Uo, we can express ReDh
¼ 2S=o. The computation can be done for different Reynolds and

Stokes numbers, always in the laminar regime.

For all of the results obtained in this research, the time step Dt ¼ T/N with N ¼ 19 was used; the compressibility

factor d and pseudo-time step Dt were chosen based on the criteria supplied by Chorin (1967) and Soh and Goodrich

(1988), and finally implementing numerical experiments by correcting the values of d and Dt via appropriate correction

factors and the Courant number in the range of 30–40. In all computations, convergence was reached and the iterations

were stopped in pseudo-time when the r.m.s. values of the numerical residuals of the momentum and continuity

equations were all less than 10�4, which is low enough to ensure that the governing equations of fluid motion are

satisfied for each real-time step. Samples of the numerical results obtained are discussed in Section 5, and later on they

are compared with the experimental results.
4. Experimental results

The experimental results in Figs. 8–12 have been obtained for transverse translational and rocking motions of the

outer cylinder. These figures represent sample data, chosen out of 1000 files of experimental data obtained. Normally, in

the figures shown, the panels on the left are for no fluid flow and those on the right for fluid flow with ReDh
¼ 2900,

unless otherwise indicated. The figures present the following data: (i) the amplitude spectrum of the unsteady pressure

for specific transducers; (ii) the unsteady pressure versus distance along the cylinder, obtained by all pressure

transducers; (iii) the phase angle versus the distance along the cylinder, obtained by all pressure transducers; (iv) the

coherence spectrum of the unsteady pressure with respect to the acceleration of the outer cylinder for specific pressure

transducers.
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Fig. 9. Samples of phase angles of the unsteady pressure with respect to the displacement of the outer cylinder in translational motion

from pressure transducers 1 to 7 shown in Fig. 4(a) for e ¼ 0.1075 and f ¼ 20Hz. X is defined as x/h. (a) No flow; (b) ReDh
¼ 2900.

Fig. 8. Samples of the unsteady pressure spectra in the annulus, as measured by pressure transducers on the inner annular wall while

the outer wall (cylinder) was in translational motion, for e ¼ 0.1075 and f ¼ 20Hz: ________, pressure transducer 1 (see Fig. 4); – – –,

pressure transducer 2. (a) No flow; (b) ReDh
¼ 2900.

Fig. 10. Samples of coherence spectra of the unsteady pressure with respect to the acceleration of the outer cylinder in translational

motion from pressure transducer 3 (see Fig. 4(a)); e ¼ 0.1075 and f ¼ 20Hz. (a) No flow; (b) ReDh
¼ 2900.
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ARTICLE IN PRESS

Fig. 11. Nondimensional unsteady pressure versus length for translational motion of the outer cylinder from pressure transducers

1 to 7 shown in Fig. 4(a). The amplitude is e ¼ 0.1075and the frequencies are: J, f ¼ 20Hz; n, f ¼ 30.4Hz; *, f ¼ 40Hz. (a) No flow;

(b) ReDh
¼ 2900.

Fig. 12. Nondimensional unsteady pressure versus length for rocking motion of the outer cylinder from pressure transducers

1 to 7 shown in Fig. 4(b). The amplitude is e ¼ 0.1075and the frequencies are: J, f ¼ 20Hz; n, f ¼ 30.4Hz; *, f ¼ 40Hz. (a) No flow;

(b) ReDh
¼ 2900.
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Fig. 8 presents the unsteady pressure amplitude readings for translational motion of the cylinder for e ¼ 0.1075 and

f ¼ 20Hz, measured by individual pressure transducers through the spectrum analyzer, recorded and processed by the

computer1; e is the amplitude of oscillation of the outer cylinder divided by the annular gap, h. Fig. 9 presents the phase

angles along the axis of the centre-body measured by pressure transducers 1–7 (see Fig. 4(a)), again for e ¼ 0.1075 and

f ¼ 20Hz, and translational motion. From this figure it is clear that the phase angles are nonzero but close to zero,

which is reasonable because the fluid is air. Fig. 10 presents the coherence between the unsteady pressure signals from

pressure transducer 3 in Fig. 4(a) and the acceleration signals, for the same e and f, and type of motion.
1The origin of the lower frequency peak (fE3Hz) in Fig. 8(b) is probably mechanical or flow-related upstream vibration, transmitted

via the flowing fluid. Such peaks are smaller, as compared to the main one at the excitation frequency, for higher frequencies: f ¼ 30, 40

and 50Hz; they are not present at all at fo20Hz. During the experiments, there were certain devices used to reduce the effects of non-

uniformity in the flow and the noise coming from the surroundings. These devices are honeycombs at the entrance and exit of the

annulus, as shown in Fig. 2, and an acoustic filter and a noise-attenuation plenum chamber, not shown in the figure.
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The same types of measurements as those shown in Figs. 8–10 have been obtained for rocking motion of the outer

cylinder but are not presented here.

The results in Fig. 8 were obtained by using a nominal calibration factor for all the pressure transducers (0.07mV/Pa,

given in the transducer catalogue); whereas, as stated in Section 2.2, the true calibration factors varied from one

transducer to the next. Thus, in a sense, these are raw data, shown only to illustrate the type and form of the data

collected; hence, the unsteady pressure amplitudes for transducer 1 and 2 in Fig. 8 should not be compared to each other.

This has to be done later, once the results have been corrected with the pertinent calibration factors for each transducer.

These corrected results, the unsteady pressure amplitudes—for all the transducers—for both translational and rocking

motions are presented in Figs. 11 and 12, for e ¼ 0.1075 and f ¼ 20, 30.4 and 40Hz plotted against X (i.e., along the

annular passage), and the phase angle for e ¼ 0.1075 and f ¼ 20Hz are shown in Fig. 9, also plotted against X.

It is seen in Fig. 11 (for translational motion) that there are small variations of the measured pressure with X, while

ideally there should be none for translational motion; these variations are nevertheless acceptably small. It is clearly

seen that the amplitude of the unsteady pressure increases with frequency, both with and without flow. Interestingly,

and perhaps counterintuitively, the unsteady pressure is rather lower in the case of a flowing fluid (see explanation given

in the next paragraph).

In Fig. 12 (for rocking motion) the uniformity of the pressure readings with respect to the frequency of oscillation is

much better than those of Fig. 11; a plausible reason for this is proposed in Section 6. For the rocking motion the hinge

is located at X ¼ x/H ¼ 15.5 from the right-hand side of the outer cylinder; see Fig 4(b). If we consider the forced

vibration as a source of energy input into the system with the energy of the cylinder given by 1
2

Mðo�Þ2, this energy must

be dissipated by the cylinder or absorbed by the fluid. Since the energy input is sustained by the velocity of the

boundary, oe, it must be absorbed by the fluid and converted into potential energy. The increase in the pressure of the

fluid is the result of this energy input. Thus, when we have quiescent fluid, the energy input is constant because o ¼ 1

and e ¼ 0.05375. Therefore, the pressure amplitude is constant as shown in Figs. 11(a) and 12(a). When we have fluid

flow, the energy input is frequency dependent, i.e., for Re ¼ 2900 and f ¼ 20, 30.4, 40Hz, o ¼ 0.462, 0.702 and 0.924,

respectively. With constant e ¼ 0.05375 and the variable o as above, the energy input and consequently the pressure

becomes a function of the frequency, as shown in Figs. 11(b) and 12(b). These effects can also be seen in Fig. 13. There

are substantial disturbances introduced in the annular space during the motion of the cylinder due to the fluid flow with

ReDh
¼ 2900 (compare Fig. 8(a) and 8(b)). The measured coherences (Fig. 10) indicate that the unsteady pressure was

generated mostly by the oscillation of the outer cylinder (e.g., the magnitudes of the coherence readings approach

unity); i.e., the other extraneous factors have less effect on the magnitude of the measured pressure signals. The

coherence plots show several peaks corresponding to the higher harmonics which cannot be easily seen in the pressure

spectra.

Errors will creep into all experiments, regardless of how much care is exerted. To ascertain the accuracy of the

experimental results, an error analysis was conducted. In this experimental investigation, the types of errors vary; they

include the apparatus, instrument errors, systematic errors, random errors, precision errors, errors coming from

disturbances, etc. Some measures were taken in these experiments to reduce some of these errors. The data obtained in

this experimental investigation are, to some extent, single-reading data rather than multiple-reading data; although

some of the measurements were repeated several times. Based on a theoretical error analysis and considering the

precision in the apparatus and accuracy in measuring devices, the maximum error in the pressure measurements was

estimated to be 70.25�0.29 Pa, which is less than 10% of the pressure readings. The uncertainties in the phase angles

are 751 for all phase angle measurements. The uncertainty pertinent to the flow velocity measurements for a specific

orifice plate and manometer reading were 2–3% approximately.
5. Theoretical results

Fig. 13 presents unsteady pressure amplitudes at different frequencies and different amplitudes subjected to

translational oscillation of the outer cylinder, both for no flow and with flow. The results obtained are for small-

amplitude oscillation; i.e., for narrow annular gaps, the amplitudes are in the range ep0.2.

For uniform annular space with the outer cylinder in rocking motion, Fig. 14 presents the unsteady pressure and

phase angle for quiescent fluid at o ¼ 1.0 corresponding to f ¼ 20Hz and e ¼ 0.1075, and for fluid flow with

ReDh
¼ 2900, o ¼ 0.462 corresponding to f ¼ 20Hz2 and e ¼ 0.1075.
2As explained in Section 3.2, for quiescent fluid, (Uo ¼ 0, we replace the Reynolds number with Stokes number in the numerical

calculations. Thus, in this case, o ¼ 1 for all frequencies of oscillation, including f ¼ 20Hz. But for fluid flow, since ReDh
¼ 2Uoh=n

and S ¼ onh2=n, for f ¼ 20Hz, n ¼ 1.62� 10�5m2/s and h ¼ 9.3� 10�3mm, one obtains o ¼ 0.462.
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Fig. 13. Samples of the nondimensional unsteady pressure at different amplitudes and frequencies for translational motion of the outer

cylinder. In (a): ________, e ¼ 0.05375; – – –, e ¼ 0.1075, – � – � –, e ¼ 0.16125 at f ¼ 20Hz. In (b): ________, f ¼ 20Hz; – – –, f ¼ 30.4Hz;

– � – � –, f ¼ 40Hz at e ¼ 0.05375. Left-hand panels are for no flow and right-hand panels for ReDh
¼ 2900.
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It is interesting to see that, for translational motion with quiescent fluid in the annulus, the pressure amplitude is

perfectly flat in the oscillatory part of the annulus (left-hand panels of Fig. 13). For flowing fluid, however, as seen in the

right-hand panels of Fig. 13, the amplitudes tend to drop a little downstream, the effect being most indicated at the

larger amplitudes (notably for e ¼ 0.16125).

For rocking motion of the outer cylinder, the boundary conditions for the velocity on the vibrating wall are obtained

using Eqs. (9) and (10). It is interesting to see (Fig. 14) that the unsteady pressure at the hinge location is in fact zero,

indicating weak connection of the unsteady pressure along the annulus.
6. Comparison between experiment and theory

The final objective of this research is the comparison of the experimental results with the theoretical ones. In this

regard, only samples of the comparison are presented.

Fig. 15 presents the comparison between the theoretical and experimental results for unsteady pressure and phase

angle, in the case of translational motion of the cylinder. The agreement is good. In Fig. 15 (right-hand panels) the data

are more scattered than those shown in left-hand panels; this is due to experimental errors and perhaps unsteadiness in

the flow (see Section 4).

Fig. 16 presents a similar comparison between the theoretical and experimental results, but for rocking motion of the

outer cylinder. It is seen that in this case the agreement between the two sets of results is excellent. The main reason for
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Fig. 14. (a) Sample of the nondimensional unsteady pressure amplitude and (b) phase angles during rocking motion of the outer

cylinder at e ¼ 0.1075 and f ¼ 20Hz. Left-hand panels are for no flow and right-hand panels for ReDh
¼ 2900. Hinge location at

X ¼ 81.0.
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this close agreement is that, for rocking motion of the outer cylinder, the moving cylinder is fixed at one end through the

hinge, and its other end is supported by the shaker; thus the oscillation is constrained to be planar, much more than in

the case of translational motion where small out-of-plane oscillation cannot be totally suppressed.
7. Conclusions

A comprehensive experimental study has been conducted for the purpose of validating an accurate numerical method. In

the experiments, part of the outer cylindrical containment of the annular passage was put in oscillatory motion by a shaker,

in either a translational or a rocking mode. The unsteady pressure all along the annular wall and the phase difference

between the oscillation and the pressure were measured, either with quiescent fluid or with laminar air-flow in the annulus.

The pressure and phase were also calculated numerically, using a time-accurate integration method to solve the

Navier–Stokes equations for the same annular geometry as in the experiments. In this method, a three-point backward

implicit scheme in time was used to enhance the accuracy and efficiency of computation. The method used is based on

artificial compressibility and pseudo-time integration. A factored ADI scheme was used to solve the scalar tridiagonal

systems of equations obtained on stretched scattered grids.

The comparison between theoretical and experimental results shows that agreement between the two is generally very

good, both in terms of the unsteady pressure amplitude along the annular passage and the corresponding phase

difference with respect to the oscillation. In fact, in the case of rocking motion, when out-of-plane oscillation of the

outer annular cylinder was minimized, agreement between theory and experiment is judged to be excellent.
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Fig. 16. Nondimensional unsteady pressure amplitude and phase angle with respect to the displacement of the outer cylinder in

rocking motion. Comparison between theoretical and experimental results for e ¼ 0.05375 and f ¼ 30.4Hz. Left-hand panels are for no

flow and right-hand panels for ReDh
¼ 2900.

Fig. 15. Nondimensional unsteady pressure amplitude and phase angle with respect to the displacement of the outer cylinder in

translational motion. Comparison between theoretical and experimental results for e ¼ 0.1075 and f ¼ 20Hz. Left-hand panels are for

no flow and right-hand panels for ReDh
¼ 2900.
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In conclusion, this work has succeeded in validating the theoretical model, at least for values of ep0.2. It should be

mentioned here that for e40.2 it has been shown that the theory used in this paper becomes insufficiently accurate, as

the boundary conditions must then be applied on the moving surface, rather than at its mean position; this requires
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either a moving solution grid or a time-dependent coordinate transformation, such as used, for example, in Mateescu

et al. (1996). However, the present work can be used with confidence for flow-induced vibration and/or fluid–structure

interaction analysis of annular and/or leakage flow problems.
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Appendix A

The Reynolds number is calculated from the following equations. To begin with, the flow rate is obtained from

(Miller, 1989)

Q ¼ 0:09970190
CdYd2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g4

p
ffiffiffiffiffi
hw

rf

s
, (A.1)

where Q is the volumetric flow rate of the air in ft3/s, Y is the air expansion factor for the orifice, taken to be Y ¼ 1 for

small differential pressure, g ¼ d=D, and Cd is the coefficient of discharge for the orifice, given by

Cd ¼ C1 þ
b

Ren
D

with b ¼ 91.71g25, n ¼ 0.75, ReD ¼ V1D=n, V1 being the velocity of air upstream of the orifice; CN is given by

C1 ¼ 0:5959þ 0:0312g2:1 � 0:184g8 þ 0:39
g4

1� g4
� 0:0158g3.

In Eq. (A.1), d and D are in inches, hw is the differential air pressure in inches of water reading across the taps on the

two sides of the orifice plate, and rf ¼ 0.075 lbm/ft3 for air at standard temperature and pressure. The Reynolds number

for the annulus is obtained by

Re ¼
Qh

Ann
¼

1

2
ReDh

, (A.2)

where the annular gap width is h ¼ 9.3mm, the kinematic viscosity of air n ¼ 1.62� 10�5m2/s, and An ¼ pðR2
o � R2

i Þ ¼

2.87� 10�3m2 is the annular cross-sectional area.
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